Prof. Elad Koren & Prof. Ilya Goykhman

Our group includes about 8 graduate student including PhD, MSc and postdoctoral fellows. Main research aims are focused on nanoscale electronic, optical and mechanical characterization of low dimensional materials and devices.

Our group consist of a lab engineer, two researchers and five graduate students on different levels including MSc, PhD and postdoctoral fellows. Our research is focused on nanoscale optoelectronics and hybrid integration of 2D materials for advanced applications in communication, photonics and sensing.

Main Relevant Publications


  1. Bessler, R.; Duerig, D.; Koren, E.; “The dielectric constant of Bilayer graphene interfaces”, Nanoscale Advances, 2019, 1, 1702. Link
  2. Koren, E.; Leven, Itai.; Knoll, A.; Loertscher, E.; Hod, Oded.; Duerig, D.; “Coherent commensurate electronic states at the interface between misoriented graphene layers”, Nature Nanotech.2016, 11, 752. Link
  3. Koren, E.; Knoll, A.; Loertscher, E.; Duerig, D.; “Adhesion and friction of mesoscopic graphite sliding contacts”, Science2015, 348, 679. Link
  4. Koren, E.; Knoll, A.; Loertscher, E.; Duerig, D.; “Direct experimental observation of stacking fault scattering in HOPG meso-structures“, Nature Comm. 2014, 5, 5837. Link
  5. Koren, E.; Knoll, A.; Loertscher, E.; Duerig, D.; “Measurement of the spreading resistance of meso-scale circular contacts on HOPG”, Applied Physics Letters 2014, 123112, (105). Link
  6. Koren, E.; Sutter, E.; Bliznakov, S.; Ivars-Barcelo, F.; Sutter, P.; “Isolation of high quality graphene from Ru by solution phase intercalation”, Applied Physics Letters 2013, 121602, (103). Link
  7. J. E. Muench, A. Ruocco, M. A. Giambra, V. Miseikis, D. Zhang, J. Wang, H. F. Y. Watson, G. C. Park, S. Akhavan, V. Sorianello, M. Midrio, A. Tomadin, C. Coletti, M. Romagnoli, A. C. Ferrari, I. Goykhman, “Waveguide-integrated, plasmonic enhanced graphene photodetectors”, Nano Letters  (2019),  DOI: 10.1021/acs.nanolett.9b02238
  8. D. De Fazio, D. G. Purdie, A. K. Ott, P. Braeuninger-Weimer, T. Khodkov, S. Goossens, T. Taniguchi, K. Watanabe, P. Livreri, F. H. L. Koppens, S. Hofmann, I. Goykhman, A. C. Ferrari, A. Lombardo, “High-mobility, wet-transferred graphene grown by chemical vapor deposition”,  ACS Nano 13, 8926 (2019).
  9. V. Sorianello, M. Midrio, G. Contestabile, I. Asselberg, J. Van Campenhout, C. Huyghebaerts, I. Goykhman, A. K.  Ott, A. C. Ferrari, M. Romagnoli, “Graphene phase modulator”, Nature Photonics, 12, 40-44, (2018).
  10. I. Goykhman, U. Sassi, B. Desiatov, D. De Fazio, N. Mazurski, U. Levy and A. C. Ferarri,  “On-chip integrated, silicon-graphene plasmonic Schottky photodetector, with high responsivity and avalanche photogain”, Nano Letters, 16(5), (2016).
  11. P. G. Karagiannidis, P. G. Karagiannidis, S. A. Hodge, Z. Xu, L. Lombardi, F. Tomarchio, A. Katsounaros, N. Decorde, S. Milana, I. Goykhman, F. Torrisi, A. C. Ferrari, “Microfluidization of graphite and formulation of graphene-based conductive inks”, ACS Nano, 11(3), (2017). 
  12. M. Grajower, B. Desiatov, I. Goykhman, L. Stern, N. Mazurski, and U. Levy, “Direct observation of optical near field in nanophotonics devices at the nanoscale using Scanning Thermal Microscopy,” Opt. Express, 23, 27763-27775 (2015). 
  13. B. Desiatov, I. Goykhman and U. Levy, “Direct Temperature Mapping of Nanoscale Plasmonic Device,” Nano Letters, 14 (2), 648–652 (2014). 


Koren, E.; Loertscher, E.; Knoll, A.; Duerig, D.; “Device and method for storing or switching“, Patent granted, IBM (Patent number: 9431100).

Koren, E.; Despont, M.; Grogg, D.; Knoll, A.; DuerigD.; “Electromechanical switching device with 2D layered material surfaces”, Patent granted, IBM (Patent number: 9070578).

Koren, E.; Loertscher, E.; Knoll, A.; Duerig, D.; “Electromechanical switching device with electrodes having 2D layered materials with distinct functional areas”, Patent granted, IBM (Patent number: 9643839).

Research description in this project

Microscopic and spectroscopic characterizations of graphene/Cu hybrid RF waveguides. Investigation of possible pathways to reduce losses and to increase the bandwidth of graphene/Cu hybrids in the high-frequency domain by graphene incorporation into the transmission line structure. Nanoscale spectroscopy and microscopy on test devices operated both in DC and RF regimes. Study of possible correlations between graphene properties such as quality, doping, potential landscape and device performance. Design configuration, optimization and simulations of graphene/Cu hybrid RF waveguides.

Scroll to top
Skip to content